The Minor Wall-Networks between Monolignols and Interlinked-Phenolics Predominantly Affect Biomass Enzymatic Digestibility in Miscanthus
نویسندگان
چکیده
Plant lignin is one of the major wall components that greatly contribute to biomass recalcitrance for biofuel production. In this study, total 79 representative Miscanthus germplasms were determined with wide biomass digestibility and diverse monolignol composition. Integrative analyses indicated that three major monolignols (S, G, H) and S/G ratio could account for lignin negative influence on biomass digestibility upon NaOH and H2SO4 pretreatments. Notably, the biomass enzymatic digestions were predominately affected by the non-KOH-extractable lignin and interlinked-phenolics, other than the KOH-extractable ones that cover 80% of total lignin. Furthermore, a positive correlation was found between the monolignols and phenolics at p<0.05 level in the non-KOH-extractable only, suggesting their tight association to form the minor wall-networks against cellulases accessibility. The results indicated that the non-KOH-extractable lignin-complex should be the target either for cost-effective biomass pretreatments or for relatively simply genetic modification of plant cell walls in Miscanthus.
منابع مشابه
Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus
BACKGROUND Lignocellulose is the most abundant biomass on earth. However, biomass recalcitrance has become a major factor affecting biofuel production. Although cellulose crystallinity significantly influences biomass saccharification, little is known about the impact of three major wall polymers on cellulose crystallization. In this study, we selected six typical pairs of Miscanthus samples th...
متن کاملDistinct Geographical Distribution of the Miscanthus Accessions with Varied Biomass Enzymatic Saccharification
Miscanthus is a leading bioenergy candidate for biofuels, and it thus becomes essential to characterize the desire natural Miscanthus germplasm accessions with high biomass saccharification. In this study, total 171 natural Miscanthus accessions were geographically mapped using public database. According to the equation [P(H/L| East) = P(H/L∩East)/P(East)], the probability (P) parameters were c...
متن کاملThree lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus.
In this study, total 80 typical Miscanthus accessions were examined with diverse lignocellulose features, including cellulose crystallinity (CrI), degree of polymerization (DP), and mole number (MN). Correlation analysis revealed that the crude cellulose CrI and MN, as well as crystalline cellulose DP, displayed significantly negative influence on biomass enzymatic digestibility under pretreatm...
متن کاملBioethanol Production by Miscanthus as a Lignocellulosic Biomass: Focus on High Efficiency Conversion to Glucose and Ethanol
Current ethanol production processes using crops such as corn and sugar cane have been well established. However, the utilization of cheaper lignocellulosic biomass could make bioethanol more competitive with fossil fuels while avoiding the ethical concerns associated with using potential food resources. In this study, Miscanthus, a lignocellulosic biomass, was pretreated using NaOH to produce ...
متن کاملMild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus.
In this study, various alkali-pretreated lignocellulose enzymatic hydrolyses were evaluated by using three standard pairs of Miscanthus accessions that showed three distinct monolignol (G, S, H) compositions. Mfl26 samples with elevated G-levels exhibited significantly increased hexose yields of up to 1.61-fold compared to paired samples derived from enzymatic hydrolysis, whereas Msa29 samples ...
متن کامل